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Under some assumptions and transformations of variables, Yang's equations 
for R-gauge fields on Euclidean space lead to conformally invariant equations 
permitting one to obtain infinitely many other solutions from any solution of 
these conformally invariant equations. These conformally invariant equations 
closely resemble the mathematically interesting generalized Lund-Regge 
equations. Some exact solutions of these conformally in variant equations are 
obtained. Except for some singular situations, these solutions are self-dual. 

1. I N T R O D U C T I O N  

W h i l e  discuss ing the self-dual  SU(2) gauge-f ie lds  on Eucl idean  space 
Yang arr ived at the fo l lowing  equations:  

~b(+yy "[- +z-z) - -  ~)y~y - -  ~)Z~b~ + Py-'~y -]- PZ~Z = 0 ( 1 . 1 a )  

~b(pyy q- Pz~) -- 2py~y -- 2pz@z : 0 (1.1b) 

where  an overbar  denotes  the complex  conjugate ,  ~b and p are funct ions o f  
y, Y, z, and ~, ~b is real,  p is complex ,  and 

v/2y = x 1 + ix 2 (1.1c) 

v/-2Z = x 3 - ix  4 (1.1d) 

x l, x 2, x 3, x 4 are real.  
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In writing these equations some superfluous equations written by Yang 
(1977) have been dropped. 

Once one has found p and qb, the corresponding R-gauge potentials are 
given by (Yang, 1977) 

+by = (ipy, py, - i+y) 

+by = ( - ~ y ,  fly, iqby) 

+be = (iPz, Pz, -iqbz) 

+b~ = (-rO~, -~, i+z) 

and R-gauge field strengths F~, are given by (Yang, 1977) 

F ~  = B~,,, - B~,~ - B~B,, + B~B~ 

i B~ = b o x  i 

xi = - l/z itri 

where tr; are 2 • 2 Pauli matrices. 

(1.2a) 

(1.2b) 

(1.2c) 

(1.2d) 

(1.3a) 

(1.3b) 

(1.3c) 

All such solutions satisfy the condition of self-duality except when ~b 
is zero. When ~b is zero, F ~  becomes singular and the solutions obtained 
can only be treated as solutions of Yang's R-gauge equations and not self- 
dual solutions, unless a transformation like F'~, --+ U - I F ~ , U  removes the 
singularities. (These solutions may have some yet unknown relevance in 
the future.) 

It may be noted that all self-dual solutions are known in a different form 
(Chirst and Weinberg, 1978). Still, a way to obtain self-dual solutions using 
Yang's formalism has added interest because of the simplicity and the straight- 
forwardness of Yang's formalism. The set of equations (1.1) are important 
from the mathematical point of view, too. It has been observed by Jimbo et 
al. (1982) that the set of equations pass the Painlev6 test for integrability in 
the sense of Weiss et  al. (1983). In this present paper we show that under 
some assumptions and transformations equations (1.1a) and (1.1b) reduce to 
a conformally invariant set of equations which are similar in form to the 
generalized Lund-Rugge (Corones, 1978; Ray, 1982) equations. The advan- 
tage one gets from this observation is that from any solution of this reduced 
form one can generate infinitely many other solutions. 

Some particular solutions of equations (1.1a) and (1.1b) were given by 
Yang himself. These solutions were generalized by Ray (1980). Two separate 
classes of solutions were given jointly by De and Ray (l 981) in a subsequent 
paper. Chanda and Ray (1985) generalized the solutions obtained by Yang 
in a different way. These solutions included some particular cases of their 
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generalizations reported by Ray (1980) and De and Ray (1981) as well. This 
paper presents infinitely many other solutions. 

2. FORMULATION 

When written in terms of real variables, equations (1.1 a) and (1. l b) read 

0(011 q- 022 "4- 033 -~- 044) -- (02 "4- 02 q'- 02 + 02 ) q- [(Or 1 + [32) 2 

+ (ct2 - [302 + (ct3 - [34) 2 + (~x4 + [33) 2] = 0 (2.1a) 

0 ( a l l  "4- O/.12 + OL33 + 0L44 ) -- 2[(oq + [32)01 if" (~ - [31)02 

+ (ct3 - [34)03 + (et4 + 133)04] = 0 (2.1b) 

0 ( [ 3 .  + [322 + [333 + [344) - 2[([31 - a2 )01  + ( a l  + [32)02 

"4- (Or4 -'[- [33)03 -']- ([34 -- (3t3)04] = 0 (2.1C) 

where 

p = et + i[3 

The solutions for (2.1) presented 

a = ~(.r, 09 

[3 = [3(r. ~ )  

0 = 0 ( ~ ,  ~r) 

"r = "r(x I, x 2) 

= ~ ( x  ~, x 4) 

The solutions for (2.1) subject to (2.2) are given by the solutions 
equations (Appendix A) 

( 0 0 ~  - 02 + c~ + [32 + poo~)t ~ 

+ (00`'`" - 0 2  + c?~ + [32 + Q 0 0 ` ' ) •  = 0 (2 .3a)  

(0c t ,  - 2ct~0~ + P0~,)t[' 

+ (Oot,,`" - 2ct,,6`" + QOet , , ) x  = 0 (2.3b) 

(Q[3,, - 213r0~ + P013,)0 

+ (0[3`'`" - 2[3,,0,, + QO[3,~)x = 0 (2.3c) 

(2.1d) 

here are those which satisfy the relations 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

(2.2e) 

of the 
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where 

(Tll + T22)/(T 2 + r = P( 'r)  

(r + r = ~(r 

(ff33 -I- ff44)/(ff 2 -{- 0"42) = Q(cr) 

(~ + ~4 2) = x (~ )  

Equations (2.3d)-(2.3g) can be rewritten as 

VII -1- 1)22 = 0 

1)~ + 1)2 2 = R 

~33 -~ ~44 : 0 

a~ + a l  : s 

where 

(2.3d) 

(2.3e) 

(2.3f) 

(2.3g) 

(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 

or  

(ii) v = (1/2K4) In[(K4 xl + / (5 )  2 + (K4x 2 + K6) 2] 

+ (ln K7)/(2K4) 

R = ll[(K4x 1 + /s 2 + (K4x 2 + K6) 2] 

The solutions for (2.4c) and (2.4d) are given by (Appendix B) 

(2.6a) 

(2.6b) 

By virtue of (2.4e) and (2.40 one can consider R and S as functions of v 
and 8, respectively. 

The solutions for (2.4a) and (2.4b) are given by (Appendix B) 

(i) v = K2x 1 + K3x 2 + K1 (2,5a) 

R = K~ + X~ (2 .5b)  

v=f{exp[-fP('r) d'r]}d'r (2.4e) 



Yang's Euclidean R-Gauge Equations 2227 

(i) ~ = K9 x3 + glo X4 + g 8 (2.7a) 

S = K9 z + K~0 (2.7b) 

or 

(ii) = (1/2Kll) ln[(Kll x3 + KI2) 2 + (KI1 x4 + K13) 2] 

+ (In K4)/(2K11 ) (2.8a) 

S = 1][(gllX 3 + g12) 2 + (KllX 4 + g13) 2] (2.8b) 

Now, without any loss of generality one can transform (% o-) to (v, ~), and 
equations (2.3a)-(2.3c) lead to 

(~b+,~ - qb 2 + otz~ + I~Z~)R + (++~  - +z + o~2 + [3~)S = 0 (2.9a) 

(~boL~ - 2ot,~b~)R + (~bet~8 - 2o~b~)S = 0 (2.9b) 

(qb[3~ - 2[3~qb~)R + (~b[3~ - 2[3~qb~)S = 0 (2.9c) 

where v, ~, R, and S are given by (2.5)-(2.8). 
Regarding equations (2.3) and (2.9), the following observations are 

of interest. 
I. If  "r and cr satisfy a set of coupled equations of the form (2.3), then 

any function of "r and o- also satisfies the set of coupled equations of the 
form (2.3). 

II. For all possible equations of the form (2.3) generated as a result of 
the transformation of (2.2), "r is any function of (K2x 1 + K3x 2 + Kl) or [(K4x 1 
+ Ks) 2 + (K4 x2 + K6) 2] and cr is any function of (K9 x3 + Klox 4 + Ks) or 
[(KllX 3 + K12) 2 + (Kll x4 + K13)2]. Moreover, all such transformed equations 
are equivalent to the set of equations (2.9) via (2.4). 

We consider some examples. 
(i) Equations (2.3) along with 

~" = ln(K2x 1 + K3 x2 + K0 (2.10a) 

o" = ln(K9 x3 + K10 x4 + K8) (2.10b) 

or 

"r = (K2 xl + K3 x2 + K1) 2 

cr = (K9 x3 + Klox 4 + KS) 2, etc. 

are equivalent to equations (2.9) along with (2.5) and (2.7) 
(ii) Equations (2.3) along with 

"r = (Kax I + Ks) 2 + (K4 x2 + K6) 2 

o" = (KllX 3 + K12) 2 + (Kll x4 + KI3) 2 

(2.11a) 

(2.11b) 

(2.12a) 

(2.12b) 
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or 

"r = exp[(K4x 1 + Ks) 2 + (K4x 2 + K6) 2] 

tr = exp[(KHx 3 + Kl2) 2 + (KHx 4 + Kl3)2], 

are equivalent to equation (2.9) along with (2.6) and (2.8) 

or 

etc. 

(iii) Equations (2.3) along with 

"r = ln(K2x 1 + K3 X2 -q- K1) 

O" = (Kll  x3 + K12) 2 -k- (Kll  x4 q- K13) 2 

I" = (K2 xl + K3 x2 q- K1) 2 

tr = exp[(KllX 3 + K12) z + (Kll x4 + K13)2], etc. 

are equivalent to equations (2.3) along with (2.5) and (2.8) 
(iv) Equations (2.3) along with, 

"r = (K4 xl + Ks) 2 + (K4 x2 + K6) 2 

~r = In(K9 x3 + Klo X4 + g8) 

or 

(2.13a) 

(2.13b) 

(2.14a) 

(2.14b) 

(2.15a) 

(2.15b) 

(2.16a) 

(2.16b) 

"r = exp[(Kax I + K5) 2 --{- (K4 x2 + K6) 2] (2.17a) 

tr = (K9 x3 + Ktox 4 + K8) 2, etc. (2.17b) 

are equivalent to equations (2.3) along with (2.6) and (2.7). Equations (2.9) 
reduce to an interesting form when R = const and S = const. After  a 
transformation (v, ~) ~ (v',  8'), where v '  = V/v/-R and ~' = ~/x/-S, one gets 
from (2.9) 

(++~,~, - +~,  + , ~ ,  + 13~,) + 

(qb~bs,8, - qb 2, + et 2, + [32,) = 0 (2.18a) 

(~bc~,~, - 2a~,,~,/) + (~bet~,~, - 2a~,~b~,) = 0 (2.18b) 

(~b[3v,v, - 213r + (qb[3~,~, - 213~,~b~,) = 0 (2.18c) 

Finally, (2.18) can be rewritten as 

qb,~, + dp~,~, + [(et 2, + [3~,) + (et 2, + [3~,)] exp(--Zqb) = 0 (2.19a) 

[txr exp(--2qb)]r + [as, exp(--2qb)]~, = 0 (2.19b) 

[[3r e x p ( - 2 ~ ) ] r  + [[3~, exp(-2d~)]~, = 0 (2.19c) 
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where 

~b = exp(~) (2.19d) 

The set of equations (2.19) is conformally invariant, i.e., the form of 
these equations is retained under any transformation (v', 8') -~ (f, q), where 
f a n d  q are functions of v' and 8' such thatfr  = q~, andf~, = - q r  i . e . , f  
and q are mutually conjugate solutions of the Laplace equation in v' and 8'. 
Hence from any solution of the equations (2.19) one can immediately generate 
infinitely many other solutions of equations (2.19) simply to replacing 
(v', g') by (f, q). 

In this context it may be worthwhile to consider another set of coupled 
equations, namely the generalized Lund-Regge equations: 

011 -t'- 022 - -  4g(0) + h(0)[k 2 _ k 2] = 0 (2.20a) 

[klexp{-Ip(O) dO)] 1 + [h2exp{-f p(O) dO}]2=O (2.20b) 

where 0 = 0(x 1, x2), k = k(x 1, x2), 01 = O0/Ox t, and so on. 
With g = 0, equations (2.20) reduce to a conformally invariant set of 

equations, a particular example of which is the physically interesting equations 
of two-dimensional Heisenberg ferromagnets. The set of equations (2.9) 
closely resembles this situation, with, however, at least the difference that 
there are two equations for the Heisenberg ferromagnets, whereas (2.20) 
consists of three equations. 

3. SOLUTIONS 

In this paper we present some exact solutions of (2.19) which are 
considerably general in nature. Four interesting cases have been observed. 

Case L" et = et(qb), 13 = 13(dO), which can be identified with the work of 
De and Ray 0981). 

Case II: t~ = t~(13) when the set of three equations (2.19) reduces to a 
set of two equations similar to the set of two equations of two-dimensional 
Heisenberg ferromagnets and can be solved using the procedure of Trimper 
(1979) and Ray (1980). 

Case III: Here 

ct = Kl513 + u(~) (3.1) 

where K~5 is an arbitrary constant and u(qb) is an unspecified function of ~, 
u(O) :~ 0. 
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Using (3.1) in (2.19b) and then using (2.18c) in the resulting expression, 
one gets 

{ur e x p ( - 2 ~ ) } r  + {us, exp(-2~)}~,  = 0 (3.2) 

Defining 

one can reduce (3.2) to 

X = f e x p ( - 2 ~ )  du (3.3a) 

X~,,, + X~,~, = 0 (3.3b) 

which is the Laplace equation and standard solutions for X in terms of v' 
and 8' are obtainable. With (3.1) and (3.3) equation (2.19b) now becomes 
equivalent to (2.19c). 

Since the set of equations (2.19) is conformally invariant, the transforma- 
tion (v', 8') ~ (X, Y), where X and Y are mutually conjugate solutions of 
the Laplace equations, keeps the form of equations (2.19) unchanged. 

But now, from (3.3), 

= ~(X), u = u(X) (3.4) 

Thus, using the transformation (v', 8') ~ (X, Y), (3.1), (3.3a), and (3.4), one 
can observe that the three equations in (2.19) reduce to two equations only, 
and after some rearrangement can be written as 

and 

respectively. 
Defining 

fSZx + [5~, + [(2K15)I(K~5 + 1)][3x exp(2~) 

= -[r exp(2~) + exp(4~)]/(KZ5 + 1) (3.5a) 

Bxx + 13rv - 213x~x = 0 (3.5b) 

1 3 = O  - K15[f e x p ( 2 ~ ) d X ] / ( K ~ 5 + I )  (3.6) 

M(X) = -[(K~5 + 1)~xx exp(2~b) + exp(4qb)]/(K25 + 1) 2 (3.7b) 

and 

where 

one can reduce (3.5) to 

OZx + O 2 = M(X) (3.7a) 
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Oxx + Orv - 20xCbx = 0 (3.7c) 

From (3.7a), one can examine four cases separately. However, the three cases 
(i) Ox= O r = 0  
(ii) O x : ~ 0  and O r = 0  
(iii) O x = 0  and O r # 0  

can be grouped under Or = const, where the constant may even take the 
value zero. However, Or = 0 represents 13 = 13(+) and hence a = a(6)  
from (3.1), which was considered by De and Ray (1981). 

To study the fourth case, i.e., Ox 4= 0, Or ~s 0, one can proceed as 
follows. Differentiating (3.7a) with respect to Y, one gets 

OxOxr + OrOw = 0 

with the help of which Or,, can be eliminated from (3.7b). Doing some 
manipulation in the resulting expression and then on integration once, one gets 

(Ox/Or) exp(-2qb) = 7r(Y) (3.8) 

where "tr(Y) is an unspecified function of Y. 
This readily gives 

0 = O(w) 

where 

W = U A - V  

u = I exp(2@) dX [from (3.3a)] 
) ! 

= I dY/'rr v 

with the use of which in (3.7a) one gets 

(u~lM) + (vZ/M) = 1/O~ (3.9) 

Differentiating (3.9) separately with respect to u and v, respectively and 
comparing the results, one gets 

M(u}/M), + M(I/M)uv~, = (vZ)v (3.10) 

Differentiating (3.10) successively with respect to u and v, respectively, one 
finally gets 

[M(1/M),l,(v2)v = 0 

Hence 

M(1/M), = const (3.11a) 
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o r  

vr = const (3.11b) 

That (3.11a) is not permitted in our basic assumption of (3.3a) is shown in 
Appendix C. 

In the following we consider vr = const. 
Differentiating (3.9) with respect to v and using vr = const, one gets 

(1/O2)w = 0, which gives Ow = const. Hence, Or = Owwr = Owvr = const. 
Thus, in this case of Ox :~ 0, Or :~ 0, too, Or --- const is satisfied. 
So, to find the solution for the general case, when 

Or = const = K16 (say) (3.12) 

one can proceed as follows. 
Using (3.12) in (3.7b) and then integrating, once one gets 

O X ---- K17 e x p ( 2 d ~ )  (3.13) 

where KI7 is an arbitrary constant of integration. 
Generalizing (3.12) and (3.13), one concludes that 

K17 f exp(2~) dX + KI6Y + K18 (3.14) O 

With the use of (3.6), (3.14) reduces to 

13 = K19 f exp(2qb) dX  + K16Y + Kl8 (3.15) 

where g19 : K17 - K15/(K25 + 1) 
It may be noted from (3.1), (3.4), and (3.15) that both ct and 13 become 

functions of �9 only, when K16 = 0. This case has been treated by De and 
Ray (1981). 

Using (3.15) in (3.5a) and rearranging, one gets 

( I )x  X 2 2 = -[K19(K15 + 1) + 2K19KI5 + 1] exp(2~) 

2 2 - Kl6(Kl5 + 1)exp(-2~)  (3.16) 

On integration, (3.15) and (3.16) lead to 

~b = K25 Cn r (3.17a) 

[3 = K19(K22 + v'2 "~-l/2/re'2 + re'2 x - l / E I - / V 2  "-I- K224)E(r) ix  19/ k 1~- 25 ix  24./ tk Ix 25 

-- K24r] + Kl6Y + K18 (3.17b) 

where 



Yang's Euclidean R-Gauge Equations 2233 

r = (K222 + re'2 "~1/2r 4. K24)l/2(X _ g21) (3 .17c)  �9 ~- 191 k *~" 25 

K22 = K19K15 + 1 (3.17d) 

K23 = K16KI5 (3.17e) 

w h e r e  K16 4: 0. 

K20 and K21 are arbitrary constants of integration. 
Here, 

K24 {-K20 [K220 + 4(K223 _]_ 2 2 2 1/2 2 = -- K16)(K22 q" KI9)] }/2(K22 + K29) (3 .170  

K225 {K20 [K20 + 4(K23 + 2 2 = -- KI6)(K22 + K26)]l12}/2(K22 + K29) (3.17g) 

The requirement that the permitted values of qb lie between +K25 and -Kz5 
enables one to avoid the possible singularities. 

To find the value of oL, one may use the value of [~ from equation (3.17b) 
and the value of u(q~) from equation (3.3a) and obtain 

Ot = KI9(K22 + ,xv219/"~- l/2t'v2k *x 25 + K24)- 1/2( 1 + KI5)[(K25 + K24)E(r) - K24 r] 

+ KlsK16Y + K15Kt8 (3.17h) 

Case IV." Without loss of generality one can write from equation (2.18b) 

et,, exp(--2qb) = ~,  (3.18a) 

e~a, e x p ( - 2 ~ )  = -~v' (3.18b) 

such that e~,~, = eta,,,, leads to 

{~v, exp(2qb)}r + {Ca' exp(2~)}a, = 0 (3.19) 

Similarly, one can write without loss of generality from equation (2.18c), 

[3r exp(-2qb) = ~a' (3.20a) 

[38, e x p ( - 2 ~ )  = - ~ ,  (3.20b) 

such that [3~,a, = [3a,r leads to 

{s162 exp(2~)}r + {s exp(2~)}8, = 0 (3.21) 

Eliminating ere, eta,, [3r and [3a, from equation (2.18a) with use of (3.18) 
and (3.20), one gets 

d#~,~, + qb~, a, + [(~2, + s + (~2, + s exp(2~) = 0 (3.22) 

In the following, we will obtain solutions of the three coupled equations 
(3.19), (3.21), and (3.22) using the assumption, 
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= K25X + m(~) (3.23) 

where K25 is an arbitrary real constant and m(~) is an unspecified function 
of ~b = const. 

Using (3.23) in equation (3.19) and then using (3.21) in the resulting 
expression, one gets 

{m~, exp(2~)}~, + {ms, exp(2~)}~, = 0 (3.24) 

Defining 

one can reduce (3.24) to 

6 = f exp(2qb) dm (3.25a) 

6~',' + 6~'~' = 0 (3.25b) 

which is the Laplace equation and standard solutions of 6 in terms of v and 
8 are obtainable. 

With equations (3.23) and (3.25), equation (3.21) now becomes equiva- 
lent to (3.19). 

Since the set of equations (3.19), (3.21), and (3.22) is conformally 
invariant, the transformation (v', ~') --~ (6 "q), where 6 and "q are mutually 
conjugate solutions of the Laplace equations, keeps the form of equations 
(3.19), (3.21), and (3.22) unchanged. 

But now, from equation (3.25), 

q~ - qb(6), m = m(6) (3.26) 

Thus, using the transformation (v', g') ---> (6, "q) along with equations (3.23), 
(3.25a), and (3.26), one can observe that the three equations (3.19), (3.21), 
and (3.22) reduce to two equations only and after some rearrangement can 
be written as 

~ + ~ + [2KzsI(K~5 + 1)]X~ exp( -2~)  

= - [ ~  exp( -2~)  + exp(-4~)]/(K25 + 1) (3.27a) 

and 

Defining 
( 

= X - [K25/(K~5 + 1)1 J exp( -2~)  d6 

and X = X(6, "q), one can rewrite (3.27) as 

(3.27b) 

(3.27c) 
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• + X~ = N(~) (3.28a) 

where 

N(~) = -[(K2Z5 + 1 ) ~  e x p ( - 2 ~ )  + exp(-4qb)]/(K~5 + 1) 2 (3.28b) 

X~ + X~n + 2X~qb~ = 0 (3.28c) 

One may observe the similarities between equations (3.5) and (3.27) or 
between equations (3.7) and (3.28). Thus, the procedure adopted in the case 
of (3.7) holds here also. 

Proceeding from (3.28), similarly as was done in starting from (3.7) up 
to (3.12), here also one can observe that 

X = x(m + n) 

where m = f e x p ( - 2 ~ )  d~ and n = f d'q&, e being an unspecified function 
of % As before [as in equation (3.11)], these lead to 

or 

n~ = const 

N(lIN)m = const 

Similar to (3.11a), it can be shown that N(lIN)m = const is not permitted 
(similar to Appendix C). 

In the following we will consider 

• = const = Kz6 (say) (3.29) 

Proceeding similarly as was done starting from (3.12) up to (3.15), here 
one obtains 

K27 I exp(--2~)  d~ + K26 ~ q- K28 (3.30) 

Using (3.30) in (3.27a) and rearranging, one gets 

2 2 ~ = -[Ke9(K25 + 1) + 2KzsK29 + 1] e x p ( - 2 ~ )  

2 2 -- Kz6(K25 + 1) exp(2~)  (3.31) 

Also, using (3.31), it can be shown that 

~(K323 + K~6)-1/2 I [(+2 + 2 2 _ +2)]-l/2 = K34)(K35 d~b + K31 (3.32) 

Here also one can observe that the integral in (3.32) has the form of an 
elliptical integral and can be expressed in terms of standard elliptic integrals. 
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On integration, (3.30) and (3.31) lead to 

d o = K31 Cn r 1 

= -T-K27(K23 "t- lxt1226)x'- l/2r/lr?-21_k 'x 35 + g z 4 ) E ( r l )  - gZ4r l ]  

-[- Kz6TI +- K28 

(3.33a) 

(3.33b) 

where 

r l  = _T_(K23 + *~t1226!'d/21te'2~,,~. 35 "F K24)1/2(t~ - K31 ) 

K32 = K29K25 -+- 1 

K33 = K26K25 

(3.33c) 

(3.33d) 

(3.33e) 

K30 and K31 are arbitrary constants of integration. Here, 

K234 {_K30[K20 + 4(K22 + 2 2 2 1/2 2 = KZ9)(K33 + K26)] }/2(K33 + K26) (3.33f) 

K] 5 {K30 [K20 + 4(K22 + 2 2 2 1/2 2 ----- -- K29)(K33 + K26)] }/2(K33 + K26) (3.33g) 

Thus do is given by (3.33a). Then E is given by (3.33b) and rn is given by 
(3.25a), so that ~ is given by (3.23). All these quantities are given in terms 
of ~ and % which are mutually conjugate solutions of the Laplace equa- 
tion (3.25b). 

Since equations (3.28) and hence (3.27) have been completely solved, 
one can now conclude that for these solutions, ot~,~, = a~,~, and [3r = [3~,r 
are satisfied. 

Hence, from (3.18) one can write 

= f [Ca' exp(2~)] dr'  OL 

+ _ 0 dv']~ d~' / { - ~ ,  e x p ( 2 ~ ) f f ~ 7  1 [~a, exp(2~) J + K36 

which with the use of (2.18d) reduces to 

121. = (do2~g,) dr' + _do2~v ' __ ~ (do2~8,) dr' dS' + K36 

(3.34) 

where K36 is an arbitrary constant of integration. 
Similarly, from (3.20) and (2.18b) one can write 
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f f[ ] [3 = (qb2]~8,) dr' + --+2E v' -- - ~  (qb2Es,) dr' dS' +/(37 

(3.35) 

where K37 is another arbitrary constant of integration. 
We have seen that E, [, and d~ can be expressed in terms of ~ and ~q, 

which are mutually conjugate solutions of the Laplace equation (3.25b). 
Hence, one can conclude that (3.34) and (3.35) give a and [3, respectively, 
in terms of ~ and "q. 

4. SUMMARY 

As a result of searching for solutions of (2.1) of the type (2.2) we 
observe the following. 

1. "r is any arbitrary function of (K2 x! + K3 x2 q- KO or {(K4 xl + Ks) 2 
+ (Kax 2 + K6)2}. cr is any arbitrary function of (/(9 xl + Klo x2 + Ks) or 
{(KII x3 + KI2) 2 + (KI1 x4 + K13)2}. 

2. For any such value of "r and ~r equations (2.1) can be transformed to 
(2.9) via (2.2) along with (2.5)-(2.8). 

3. For R = const and S = const only (2.5) and (2.7) are permitted. 
However, for various complicated forms of -r and o" equations (2.1) can be 
transformed to (2.19) with (2.5) and (2.7). Furthermore, for R = const and 
S = const we get from (2.9) a set of equations (2.19) which is conformally 
invariant and is very similar in form to the generalized Lund-Regge equations 
(Corones, 1978; Ray, 1982). Thus from any solutions of (2.19) one can 
generate infinitely many other solutions by virtue of transformations of the 
type (v', 8') ~ (f, q), where (v', B') are old independent variables, (f, q) are 
new independent variables, and (f, q) are functions of (v', 8') such that fr  
= qa' and fa, = - q r  i.e., f and q are mutually conjugate solutions of the 
Laplace equations in v' and 8'. 

4. The solutions of the equation (1.1) via (2.19) observed by us can be 
grouped under four cases. In spite of the fact that cases I and II are to some 
extent repetitions of previous work (De and Ray, 1981; Trimper, 1979; Ray, 
1980a,b), our observation that an infinite number of new solutions can be 
generated from any solution of (2.19) makes mention of these cases worth- 
while in our context. 

Case I: Here, oL = a(+),  [3 = [3(+), and the solutions are particular 
cases of the solutions obtained by De and Ray (1981). 

Case II: Here et = or([3) and the solutions are particular cases of solutions 
obtainable using the procedure of Trimper (1979) and Ray (1980a,b). 
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Case 1II: ~b is obtained in equation (3.17a), where r can be found from 
(3.17c); a and [3 are obtained in equations (3.17h) and (3.17b), respectively. 
In these equations, E(r) is an odd analytic function (Grdelyi et al., 1953) of 
r and when r is increased by 2K, E(r) is reproduced, save for an additive 
constant given by f2x dn 2 r dr, where, K is the complete elliptic integral of 
the first kind, 

I 
'rr/2 

K = (1 - k 2 sin:0)- 1/2 dO 
.s0 

1 1 = ~F(-~, �89 1; k 2) (4.1) 

when k lies in the cut plane. 
The qb in equation (3.17a) oscillates (Grdelyi et aL, 1953) between +K25 

and -K~5 with a period 4K and has zero points congruent with 

Te'2 "~-l/2t ' t? '2 _]_ K24)-1/2K + K21 S = (K~2 + ~x 191 \•x25 

o r  

X = 3(K22 + ~txV2191"~- l/2[W2~lx 25 + Kz94) -l/2K + Kzl 

where K is defined by (4.1). 

Case IV: + is obtained in equation (3.33a), where rl is obtained in 
(3.33c); ec and [3 are obtained in equations (3.34) and (3.35), respectively. 
Here ~ is obtained in equation (3.33b), which also gives ~. 

rl has the property similar to r described above for case III. As we now 
know ot and [3, we can obtain p using equation (2.1d). Once we have found 
p and ~b, the corresponding R-gauge potentials and the R-gauge field strengths 
can be obtained from (1.2) and (1.3), respectively. 

All such solutions represent the condition of self-duality except when 
+ is zero, because where qb is zero, F~v becomes singular and the solutions 
obtained can only be treated as solutions of Yang's R-gauge equations and 
not self-dual solutions unless a transformation like F'~v -+ U-1F~,U removes 
the singularities. However, these solutions may have some (unknown) rele- 
vance in future. 

APPENDIX A 

From equation (2.2c), qb = qb(,, (r), which gives 

qb 1 = ~)x'l 'l and ~bll "~" (~),r,r"rl 2 -}- ~),rTll  

Similarly, we have +2, ~b3, ~b4, ~b22, ~b33, and d~44. 
Again, from (2.2a) and (2.2b) we have similar equations for +'s.  Using 

these in equation (2. la), keeping in mind equations (2.2d) and (2.2e), we have 
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(++, ,  _ +2 + ~ + [~2)(,r2 + -r~) 

+ ( + + ~  _ +~ + ~ + 132)(0-~ + 0-I) 

q- ++,r(,1-11 .o r. T22) qt_ ++tr(0-33 "~ 0"44) = 0 ( A l a )  

Similarly, we have  f rom equation (2. lb)  

(~bet,, - 2et,qb,)('r 2 + "r22) + (~bot,,,, - 2et,~+~)(0- 2 + 0-2) 

+ qbtx~(~11 + T22) + qbot,~(0-33 + 0-44) = 0 ( A l b )  

and f rom equation (2.1c) 

(+13,, - 213,d~,)('r 2 + "r 2) + (~b13,,,, - 213,~qb,,)(0- 2 + 0-24) 

+ ~b[3~('rll + "r22) + qb13,~(0-33 + 0-44) = 0 (Alc )  

Compar ing  the value of  (0-33 + 0-44) f rom (Ala )  and (Alc )  and that f rom 
(Alc )  and (Alb) ,  then dividing these two equations, we have after some 
simplification 

(Tll  "q- '/'22)/('1"2 -'[- T 2) 

= a function of  (qb, qb~, qb~, qb~, 

(~O'O') O['r) O~or) O/.,,) 0[o-o- ) 

Since the left-hand side of  above equation is a function of  x 1 and x 2, the 
r ight-hand side will also be function o f  x I and x 2. But  on the r ight-hand side 
x I and x 2 do not appear  in explicit  form, rather as a function of  "r(x ~, x 2) only. 
Thus we may  write 

(r l l  + r22)/(r 2 + r22) = an arbitrary function of  "r 

= P('r) (say) (A2) 

By the same procedure we arrive at 

(0-33 + 0-44)/( 0-2 + 0-2) = an arbitrary function of  0- 

= Q(0-) (say) (A3) 

Putting (A2) and (A3) in equat ion (A la )  and using the same argument  as 
above we arrive at 

"rl z + "r 2 = O('r) and 0-3 + 0-2 = X(O. ) 

Here t~(-r) is an arbitrary function of  -r and • is another  arbitrary function 
of  0-. Then equations ( A l a ) - ( A l c )  reduce to (2.3a)-(2.3c) .  
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APPENDIX B 

First we consider the equations 

(2.4a) vll  + vz2 = O 

(2.4b) v 2 +  v 2 = R  

Differentiating (2.4b) first with respect to x 1, we obtain vli and then with 
respect to x 2, we obtain vzz. Putting these values of vii and P22 into equation 
(2.4a), we have 

R1J12 = gvlslV 2 (B 1) 

From here we have two cases: 

Case I: R~ = 0. Then R = const. Hence, v should be a linear function 
of x t and x 2, i.e., 

v = E(x l) + F(x 2) + K~ 

Finding Vl and vz and using (2.4b), we arrive at 

V = K2 xl  + K3 xz + K1 (B2) 

with 

K 2 + X 2 = R (B3) 

where K~, K2, and K3 are constants. 

Case II. R~ -r O. Writing (B1) first as Rvl2 = Rip  2 and then integrating 
with respect to x ~, we have 

v2 = VR (B4a) 

where V is an arbitrary function of x 2 only. 
Now writing (B1) as Rye2 = RzVl and then integrating with respect to 

x 2, we have 

Vl = UR (B4b) 

where U is an arbitrary function of x I only. 
Using (B4a), (B4b) in equations (2.4a), (2.4b), we have 

U~ + 1,'2 + (U 2 + V2)R~ = 0 (B5a) 

U 2 + V 2 = 1/R (B5b) 

Using (B5b) in equation (B5a), we arrive at 

U~ + V2 = - ( l n  R)~ (B6) 
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Differentiating (B5) separately with respect to x 1 and x a, using (B4a), (B4b), 
and finally comparing the results, we conclude that 

UI = V2 (B7) 

which shows that left-hand side is a function of x ~ only, whereas the right- 
hand side is a function of x 2 only. 

Hence, one can conclude from (B7) that 

U1 = V2 = K4 (B8) 

where K4 is an arbitrary constant. 
When U1 = K4, then 

U = Kax I + K5 (B9a) 

When Vz = K4, then 

V = K4 x2 + K6 (B9b) 

where Ks and K6 are arbitrary constants of  integration. 
Using (B9a) and (B9b) in equation (B6), we have 

R = K7 exp(-2K4v)  (B 10) 

with K7 :~ 0, K4 ~ 0. Putting the value of R from equation (B 10) in (B4a), 
(B4b), we have 

{exp(2K4V)}l = 2KZ4K7 xl + 2K4KsK7 (B l l a )  

{exp(2Knv)}2 = 2K]K7x 2 + 2KaK6K7 (B 1 lb) 

Integrating (B 1 1 a), one gets 

exp(2Kav) = g2g7(x1) 2 -.I- 2K4K5K7 xl .-t- G(x 2) (B12a) 

where G(x 2) is any arbitrary function of x 2. 
Using equation (B12a) in (Bl lb) ,  we have 

[G(x2)12 = 2KZ K7 x2 + 2K4K6K 7 (B12b) 

Integrating (B 12b) with respect to x 2 and then using the result in (B 12a), one 
finally gets 

v = [1/(2K4)] ln{K2KT[(Xl) 2 + (x2) 2] 

+ 2KnKT(Ksx 1 + K6x 2) + K~} (B13) 

Using (B 13) in equation (B10), we have 

R = K7/{KZ4K7[(x') 2 + (x2) 21 + 2KaKT[Ksx 1 + K6 x2] -t- K~} (B14) 
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where K~ is an arbitrary constant of integration. 
Differentiating (B13) first with respect to x a, then with respect to x z, 

and using the results along with (B14) in (2.4b), one gets 

K~ = K7(K~ + K~) (B15) 

Using (B15) in (BI3) and (BI4), we have 

v = [1/(2K4)] ln[(K4x I + Ks) 2 

+ (K4x 2 + K6) z] + [In KT/(2K4)] (B16) 

R = 1/[(Kax 1 + Ks) 2 + (K4 x2 + K6) z] (B17) 

One can check then (B 16) identically satisfies (2.4a). 
Similarly, using equations (2.4c) and (2.4d) we have: (i) For S~ = 0 

= K9 X3 q- Kl0 x4 -t- K8 (B18) 

S = K 2 + K~0 (B19) 

(ii) For S~ :/: 0 

= [1/(2K10] ln[(KllX 3 + K12) 2 + (KllX 4 + K13) z] 

+ [1/(2Kll)] In g14 (B20) 

S = 1/[(Kllx 3 + K12) 2 + (gll X4 + K13) 2] (B21) 

where Ks, K9, Kl0, Kll, K12, Kl3, and K14 are arbitrary constants. 

APPENDIX C 

Consider 

M(1/M)u = const = L (say) (C1) 

It is evident from equation (3.10) that 

M(uZx/M)u + M(1/M)uv 2 = (v~,)v 

M(u~/M)  = const = C (say) (C2) 

Using (C1) and (C2) in equation (3.10), it reduces to 

(v~,)v = Lv~, + C (C3) 

From (C1) we get 

M = N1 exp(-Lu)  (C4) 

where N1 = const v~ 0. In the following it will be shown that the above 
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equations are not satisfied simultaneously and hence M(1/M),  = const is 
not possible. 

Case I: L 4: O. Expanding (C2), we have 

M (u2) . /M + uZxM(1/M). = C 

Using (C1) and then integrating, we have from the above equation 

C1 exp(-Lu)  = C - L u }  (C5) 

where Cl is an integration constant. Rearranging equation (C5), we have 

u 2 = C2 - C3 exp(-Lu)  (C6) 

where C2 = C/L and C3 = CIIL. From equation (3.3a) we have 

Ux = exp(2~) (C7) 

from which (C6) becomes 

exp(-Lu)  = C 4 - -  C 5 e x p ( 4 ~ )  (C8) 

where Ca = CJC3 and C5 = 1/C3 are constants. 
Putting the value of M from equation (C4) into equation (3.7b) and 

using (C8), we have 

dI~XX = C 6 exp(2q~) + C7 e x p ( - 2 ~ )  (C9) 

where 

C6 = [NICs(K~5 + 1) z - 1]/(K25 + 1) = const 

Cv = -[N(KlZ5 + 1)zC4] = const 

Using (C9) in equation (3.7b), we obtain 

M = C8 exp(4qb) + C9 (C10) 

where 

C8 = - [ C 6 ( K 2 5  -t- 1) + 1]/(K25 + 1) 2 = const 

C9 = C71(KZl5 + 1) 

Comparing equations (C10) and (C4), we have 

Nl exp(-Lu)  = C8 exp(4~) + C9 (Cl l )  

Using (C8), (Cl l ) ,  and exp(qb) = d~, we have, on simplification, 

I~ 4 -~- ( C  9 - -  N1C2[C3)[(C 8 q- NI/C3) ( C 1 2 )  

As C2, C3, C8, C9, and N1 are constants, (C12) leads to the trivial solution 

~b = const (C13) 
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This proves that (C1) is not possible. 

Case II: L = 0. Then, from equation (C4), 

M(X) = const 

which leads to X = const. Hence (C1) is not possible. 

(C14) 
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